# **Research Article**

# Docking Studies Of Some *E*-2-Phenyl-4-(2-Phenylhydrazineylidene)Oxazol-5(4H)-One Derivatives As A Potential Caspase-8 Inhibitor

# Adel M. Abdel-Hakem, El-Shimaa M. N. Abdelhafez, Samar H. Abbas<sup>1</sup> Omar M.Aly

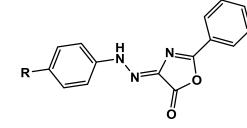
Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Egypt.

## Abstract

Hydrazone and Oxazlone are important groups and have various biological activities such as antifungal, antibacterial, anti-inflammatory, antimalarial, anticonvulsant, analgesic, antiplatelets, antituberculosis, anticancer activities anti-diabetic, and other uses. So we decided to gather the two groups to form E-2-Phenyl-4-(2-Phenylhydrazineylidene) Oxazol-5(4H)-One derivatives followed by docking study their inhibitory against caspase-8 using MOE version 2014.09 software. The results of docking study would be a representative of their apoptotic inhibition activity. Compounds 4, 8 and 21 showed the best binding to the catalytic site Cys360 and other amino acids when measured at the lowest S\_score, that encourage further study as potential caspase-8 inhibitory agents.

Keywords: Hydrazone and Oxazlone, biological activities, E-2-Phenyl-4-(2-Phenylhydrazineylidene

# Introduction


Hydrazones are a special group of compounds in the Schiff base family characterized by the presence of CH=N-N=C<sup>[1]</sup>. In recent years, a number of hydrazone compounds have been synthesized and investigated for their biological properties such a antifungal<sup>[2],</sup> antibac-terial<sup>[3]</sup>, anti-inflammatory<sup>[4]</sup>, antimalarial<sup>[5]</sup>, anticon-vulsant<sup>[6]</sup>, analgesic<sup>[7]</sup>, antiplatelets<sup>[8]</sup>, antituberculosis<sup>[9]</sup>, and anticancer activities<sup>[10]</sup>.

Oxazoloneis a chemical compound with the molecular formula  $C_3H_3NO_2$ . It was named in-line with the Hantzsch–Widman nomen-

clature and is part of a large family of oxazole based compounds (fig.1).

They are present in many biologically active natural products and are valuable synthetic precursors and pharmaceuticals. They are reported to possess anti-diabetic[<sup>11]</sup>, anti-microbial<sup>[12]</sup>, and other uses.

Here, we fused the two important groups to obtain (E)-2-phenyl-4-(2phenylhydrazineylidene) oxazol-5(4*H*)-one derivatives (**Fig. 1**) with *Para* R substitution, which are chosen according to their electronic effect, and study their effectiveness on caspase-8 as inhibitors by using docking studies.



**Fig. 1.** The structures of oxazolone and *E*-2-phenyl-4-(2-phenylhydrazineylidene)oxazol-5(4*H*)-one derivatives

# **Docking study**

Using Molecular Operating Environment (MOE®) version 2014.09; molecular docking study was carried outusing caspase-8, PDB: 2C2Z from Protein Data Bank.

| No. | Substitution<br>(R)              | S_score | Receptor<br>amino acid | Bond        | Distance A | Binding<br>Energy<br>(Kcal/mol) |
|-----|----------------------------------|---------|------------------------|-------------|------------|---------------------------------|
| 1   | $N(CH_3)_2$                      | -4.5117 | No interactions        |             |            |                                 |
| 2   | NH <sub>2</sub>                  | -4.4897 | No interactions        |             |            |                                 |
| 3   | OH                               | -4.4963 | Lys253                 | H- acceptor | 3.65       | -0.7                            |
| 4   | OCH <sub>3</sub>                 | -4.4393 | Cys360                 | H- donor    | 3.53       | -1.3                            |
|     |                                  |         | Ile257                 | Pi- H       | 3.93       | -0.7                            |
| 5   | NHCOCH <sub>3</sub>              | -4.5457 | Arg258                 | H- acceptor | 3.26       | -0.9                            |
| 6   | OCOCH <sub>3</sub>               | -4.4689 | No interactions        |             |            |                                 |
| 7   | CH <sub>3</sub>                  | -4.5328 | No interactions        |             |            |                                 |
| 8   | Phenyl                           | -5.3601 | Cys360                 | H- donor    | 3.47       | -1.1                            |
|     |                                  |         | Ile257                 | Pi- H       | 3.94       | -0.7                            |
|     |                                  |         | Arg270                 | Pi-cation   | 4.68       | -1.1                            |
| 9   | F                                | -4.3737 | No interactions        |             |            |                                 |
| 10  | Cl                               | -4.4914 | No interactions        |             |            |                                 |
| 11  | Br                               | -4.2269 | Ile257                 | Pi- H       | 4.46       | -0.7                            |
| 12  | Ι                                | -4.4720 | No interactions        |             |            |                                 |
| 13  | СНО                              | -4.6304 | His317                 | H- Pi       | 4.35       | -0.7                            |
|     |                                  |         | Arg260                 | Pi- H       | 4.08       | -0.6                            |
| 14  | COCH <sub>3</sub>                | -4.4856 | Arg258                 | H- acceptor | 3.28       | -1.0                            |
|     |                                  |         | Ile257                 | Pi- H       | 4.42       | -0.7                            |
| 15  | COOCH <sub>3</sub>               | -4.6998 | His317                 | H- Pi       | 4.33       | -0.8                            |
|     |                                  |         | Arg260                 | Pi- H       | 4.12       | -0.6                            |
| 16  | COOC <sub>2</sub> H <sub>5</sub> | -5.3026 | Gly318                 | H- donor    | 2.94       | -4.7                            |
| 17  | СООН                             | -4.6171 | Gly318                 | H- donor    | 2.93       | -3.3                            |
|     |                                  |         | Lys253                 | H- acceptor | 3.83       | -1.0                            |
| 18  | CF <sub>3</sub>                  | -4.6060 | No Interactions        |             |            |                                 |
| 19  | CN                               | -4.3261 | Lys253                 | H- acceptor | 3.46       | -1.4                            |
| 20  | SO <sub>3</sub> H                | -4.8536 | Asp319                 | H-donor     | 2.87       | -10.7                           |
|     |                                  |         | Lys253                 | H- acceptor | 2.97       | -6.1                            |
| 21  | SO <sub>2</sub> NH <sub>2</sub>  | -4.5515 | Cys360                 | H- donor    | 3.63       | -3.9                            |
|     |                                  |         | Asn261                 | H- acceptor | 3.30       | -0.8                            |
|     |                                  |         | Arg260                 | H- acceptor | 3.29       | -1.5                            |
|     |                                  |         | Arg260                 | H- acceptor | 2.97       | -4.4                            |
|     |                                  |         | Gln358                 | H- acceptor | 3.20       | -2.2                            |
|     |                                  |         | Arg258                 | Pi- H       | 4.47       | -0.8                            |
| 22  | $NO_2$                           | -4.4546 | His317                 | H- Pi       | 4.45       | -0.6                            |

**Table 1** : The results are obtained as shown in

Table 1: shows the docking results

We chose the results of docking according to the lowest docking score (s\_score). The data in the table shows that compound (4),(8),(21) have inhibitory activity toward caspase-8, as they have hydrogen bond interaction with Cys360 beside other

Docking Studies Of Some *E*-2-Phenyl-4-(2-Phenylhydrazineylidene) Oxazol-5(4H)-One interaction, as any ligand can bind to Cys, can act as a caspase inhibitor<sup>[13]</sup>. As shown in below.

#### **1-** Docking of (E)-4-(2-(4-methoxypheny l)hydrazineylidene)-2-phenyloxazol-5(4H)-one (4).

There is a binding interaction between 2 enzyme amino acids and compound in case

of the lowest S\_score = -4.4393as following: hydrogen bond donor with the catalytic amino acid CYS360 with E binding = -1.3 Kcal/mol in adistance =  $3.53^{\circ}$  A and Pi bond with ILE257 with binding energy = -0.7 Kcal/mol in a distance = 3.93 as showing in **Fig. 2** 

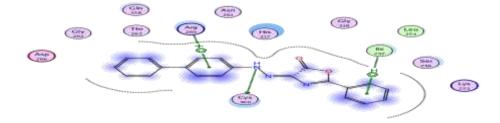



Fig. 2: 2D of compound 4 in 2C2Z

#### 2- Docking of (Z)-4-(2-([1,1'-biphenyl]-4yl)hydrazineylidene)-2-phenyloxazol-5(4H)-one(8)

There is a binding interaction between 3 enzyme amino acids and compound in case of the lowest  $S_score = -5.3601$  as following : hydrogen bond donor with the

catalytic amino acid Cys360 with E binding = -1.1 Kcal/mol in a distance =  $3.47^{\circ}$  A, Pi-H bond with ILE257 with binding energy = -0.7 Kcal/mol in a distance =  $3.94^{\circ}$  A and Pi-cation bond with Arg270 with E binding = -1.1 in a distance =  $4.68^{\circ}$  A as showing in **Fig. 3** 

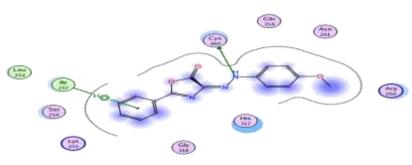



Fig. 3 : 2D of compound 8 in 2C2Z

# **3-** Docking of (Z)-4-(2-(5-oxo-2-phenyloxazol-4(5H)ylidene) hydrazineyl) benzenesulfonamide (21).

There is a binding interaction between 5 enzyme amino acids and compound in case of the lowest S\_score = -4.5515 as following : hydrogen bond donor with the catalytic amino acid Cys360 with E binding = -3.9 Kcal/mol in a distance =  $3.63^{\circ}$  A, two hydrogen bond acceptor with Arg260 with binding energy = -1.5, -4.4 Kcal/mol in a distance = 3.29,  $2.97^{\circ}$ , respectively, hydrogen bond acceptor with Gln358 with E binding = - 2.2 in a distance  $3.20^{\circ}$ 

A, Pi- H bond with Arg258 with E binding -0.8 in a distance  $4.47^{\circ}$  A and hydrogen bond acceptor with Asn261 with E binding = -0.8 in a distance = 3.30 as showing in **Fig. 4** 

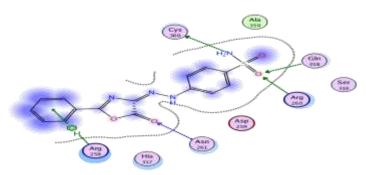



Fig. 4 : 2D of compound 21 in 2C2Z

# Conclusion

The docking studies results indicated that some compounds have a good binding for caspase-8, which can obviously explain the enzyme inhibitory effect. The type of substitution in the *p*-substitution of aniline ring affect the binding affinity and the order of better substitution *p*-sulfamoyl group > *p*-phenyl group > *p*-methoxy group.

## References

- Y. Lei, T.-Z. Li, C. Fu, X.-L. Guan, Y. Tan, Synthesis, Crystal Structures, And Antibacterial Activity Of A Series Of Hydrazone Compounds Derived From 4-Methylbenzohydrazide, Journal of the Chilean Chemical Society. 60 (2015) 2961–2965. doi: 10.4067/S0717-97072015000200021.
- 2. B.B. Casanova, M.N. Muniz, T. de Oliveira, L.F. de Oliveira, M.M. A.M. Machado. Fuentefria, G. Gosmann, S.C.B. Gnoatto, Synthesis **Biological** Evaluation and of Hydrazone Derivatives as Antifungal Agents, Molecules. 20 (2015) 9229-9241. 10.3390/ doi: molecules 20059229.
- 3. L. Popiołek, Hydrazide–hydrazones as potential antimicrobial agents: overview of the literature since 2010, Med Chem Res. 26 (2017) 287–301. doi:10.1007/s00044-016-1756-y.
- M.A. Abdelgawad, M.B. Labib, M. Abdel-Latif, Pyrazole-hydrazone derivatives as anti-inflammatory agents: Design, synthesis, biological evaluation, COX-1,2/5-LOX inhibition and docking study, Bioorganic Chemistry. 74 (2017) 212–220. doi:10. 1016/ j.bioorg.2017.08.014.

- S. Sarkar, A.A. Siddiqui, S.J. Saha, R. De, S. Mazumder, C. Banerjee, M.S. Iqbal, S. Nag, S. Adhikari, U. Bandyopadhyay, Antimalarial Activity of Small-Molecule Benzothiazole Hydrazones, Antimicrobial Agents and Chemotherapy. 60 (2016) 4217–4228. doi:10.1128/AAC.01575-15.
- V. Angelova, V. Karabeliov, P.A. Andreeva-Gateva, J. Tchekalarova, Recent Developments of Hydrazide/ Hydrazone Derivatives and Their Analogs as Anticonvulsant Agents in Animal Models, Drug Development Research. 77 (2016) 379–392. doi:10. 1002/ddr.21329.
- 7. W.B. Júnior, M.S. Alexandre-Moreira, M.A. Alves, A. Perez-Rebolledo, G.L. Parrilha, E.E. Castellano, O.E. Piro, E.J. Barreiro, L.M. Lima, H. Beraldo, Analgesic and Anti-Inflammatory Activities of Salicvlaldehvde 2-Chlorobenzoyl Hydrazone (H2)Salicylal-dehyde 4-LASSBio-466), Chlorobenzoyl Hydrazone (H2 LASSBio-1064) and Their Zinc (II) Complexes, Molecules. 16 (2011) 6902-6915.

doi:10.3390/molecules16086902.

- M. Asif, A. Husain, Analgesic, Anti-Inflammatory, and Antiplatelet Profile of Hydrazones Containing Synthetic Molecules, Journal of Applied Chemistry. (2013). doi:10.1155/ 2013/ 247203.
- M.C. Mandewale, B. Thorat, Y. Nivid, R. Jadhav, A. Nagarsekar, R. Yamgar, Synthesis, structural studies and antituberculosis evaluation of new hydrazone derivatives of quinoline and their Zn(II) complexes, Journal of

Saudi Chemical Society.22(2018) 218–228. doi:10.1016/j.jscs.2016.04.003.

- 10. N. Terzioglu, A. Gürsoy, Synthesis and anticancer evaluation of some new hydrazone derivatives of 2,6dimethylimidazo[2,1-b][1,3,4] thiadiazole-5-carbohydrazide, European Journal of Medicinal Chemistry. 38 (2003) 781–786. doi:10. 1016/S0223-5234(03)00138-7.
- G. Mariappan, B.P. Saha, S. Datta, D. Kumar, P.K. Haldar, Design, synthesis and antidiabetic evaluation of oxazolone derivatives, J Chem Sci. 123 (2011) 335–341. doi:10.1007/s12039-011-0079-2.
- T.O. Olomola, A.J. Akinboye, O.O. Olasunkanmi, L.O. Olasunkanmi, Synthesis, antimicrobial activities and computational studies of some oxazolone derivatives, Ife Journal of Science. 20(2018) 1-14–14. doi: 10. 4314/ijs.v20i1.1.
- B.A. Callus, D.L. Vaux, Caspase inhibitors: viral, cellular and chemical, Cell Death and Differentiation. 14 (2007) 73–78. doi:10.1038/sj.cdd. 4402034.